米乐投注网




米乐官网版:港大颌面外科团队研发人工智能平台


2022-05-18 02:29:45 | 作者:米乐投注网


  香港大学牙医学院口腔颌面外科临床副教授苏宇雄医生、研究助理教授蔡小慧博士、博士生John Adeoye医生和口腔黏膜科学临床副教授郑立武医生。

  口腔癌是一种颇常见的癌症,影响头颈部位。大约五成的口腔癌患者存活不超过五年,主要是发现时已属较后期,需要复杂的治疗方案,癌细胞亦有可能已扩散到其他部位。

  然而,OL/OLM转化为癌症,目前全病人患有颊黏膜白斑球的风险比率由0.4% 至40.8%不等, 因此要得知那些白斑最终会演变成口腔癌,临床上是极大的挑战。同时,病人一般需要定期覆诊和接受多次切片检查,持续监察多年,令患者感到疲惫甚至拒绝覆诊。因此,若能因应个别病人的状况,预测其演化成癌症的风险,将有助医疗人员为病人制定特定的医疗策略和跟进方式。

  来自香港大学(港大)牙医学院、李嘉诚医学院,玛丽医院病理部,以及昆士兰詹姆士库克大学医学与牙科学院的研究人员,共同研发了一个网上平台,在输入相关资料后,能针对患有OL或OLM的病人,预测他们的口腔癌病变风险,预测期长达20年之久。网上平台开放给医护人员和公众免费使用。

  研究团队采用「DeepSurv」人工智能演算法,此演算法预测癌症病变的表现优异,经一连串的验证练习后,能根据病人的一般个人统计资料、临床和病理数据,以及治疗资料等准确预测病人罹患的风险。他们利用香港和英国纽卡素泰恩的OL和OLM的病人数据,训练人工智能平台并测试其准确度。由于这些病人已被跟进多年,其病历发展已经明朗,可与平台的预测对照。测试证实,新平台能准确推算这些病人的实际病变发展,在他们每个复诊的时间点,平台预测的癌症风险水平与实际情况相吻合。

  在香港用作验证的716名病人的数据,「DeepSurv」能正确预测95% 病人的癌症风险水平。在反映预测准确度的Brier综合得分是0.04。通常预测工具如果得分低于0.25,已可转化作实际临床应用。

  而利用英国纽卡素泰恩的382名病人数据,平台正确预测82%病人的风险水平,表明其对不同的人口也具实用性。

  团队期望这人工智能工具有助改善口腔癌的预防和早期诊断。利用开放平台,医护人员可为高危患者制订监测时间表和治疗策略,对资源有限的医院,有助其确定处理病患的优先次序。

  使用平台预测病变风险,需输入二十六项有关病人的个人背景资料、病症的临床和病理描述,以及接受的治疗等。就每个个案的风险评估,平台会呈现一条曲线,展示每个时间点预测的风险级别。而当患者达到一定的风险水平时,医护人员可开始加密对患者的监察。 (图一)

  (图一)医生和牙医可根据曲线的高低来比较两个或多个OL / OLM患者罹癌的风险。一般来说,当风险概率从0.5(蓝色虚线,预计患癌的风险越来越低。患者A的预测癌症风险水平低于患者B和C。患者C的癌症发生风险最高,需在癌症预防手术后进行非常密切的监测。

  带领研究的港大牙医学院口腔颌面外科临床副教授苏宇雄医生说: 「虽然验证练习的结果,证明这人工智能预测工具非常可靠,但用者要知道,它的开发主要以研究为基础,故仍有需要再进一步优化发展。」

  「由于癌症的发展,在确诊前涉及很多生物分子层面上的转变,我们计划加入OL和OLM演变成癌症的过程中相关分子生物标记的讯息,优化预测平台,提高风险估计的精准度,之后再评估其临床成效,以及在临床试验中了解其对OL和OLM护理的影响。」苏医生补充说。

  研究团队由香港大学牙医学院口腔颌面外科临床副教授苏宇雄医生带领,成员包括博士生John Adeoye医生、研究助理教授蔡小慧博士、口腔黏膜科学临床副教授郑立武医生、临床人工智能研究助理教授Koohi-Moghadam Mohamad博士,香港玛丽医院病理部罗頴业医生,香港大学医学院外科学系曾敬贤医生和周令宇医生,以及昆士兰詹姆士库克大学医学与牙科学院汤迅教授。

  特别声明本文为澎湃号作者或机构在澎湃新闻上传并发布,仅代表该作者或机构观点,不代表澎湃新闻的观点或立场,澎湃新闻仅提供信息发布平台。申请澎湃号请用电脑访问。



上一篇:浙江发布最新AI标杆同盾常识图谱当选榜单
下一篇:每经AI电视当选2021年我国智能媒体十大年度事例